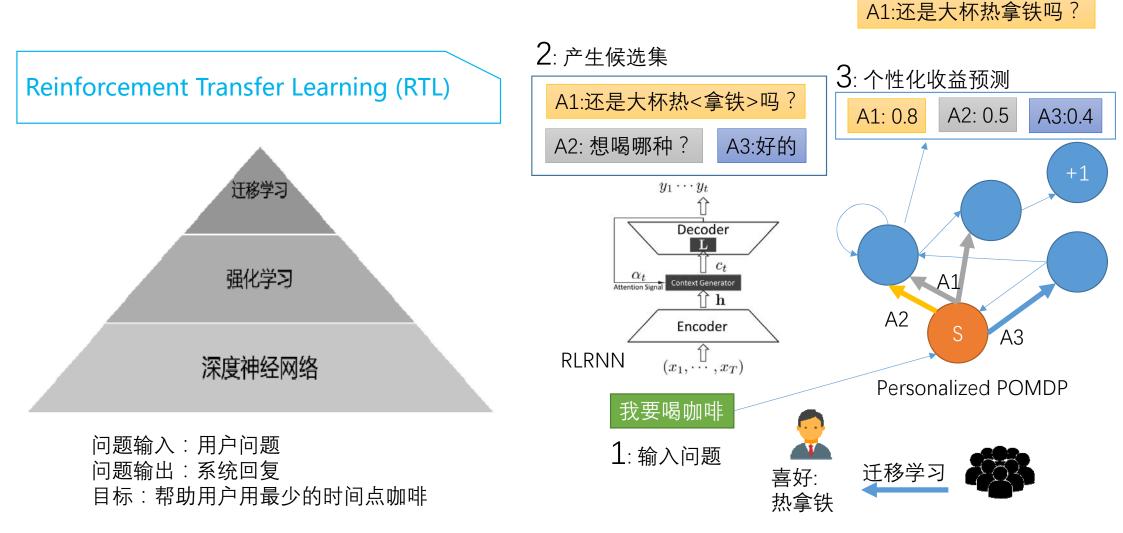
Research at Big Data Institute

Personalized Task-Oriented Dialogue System



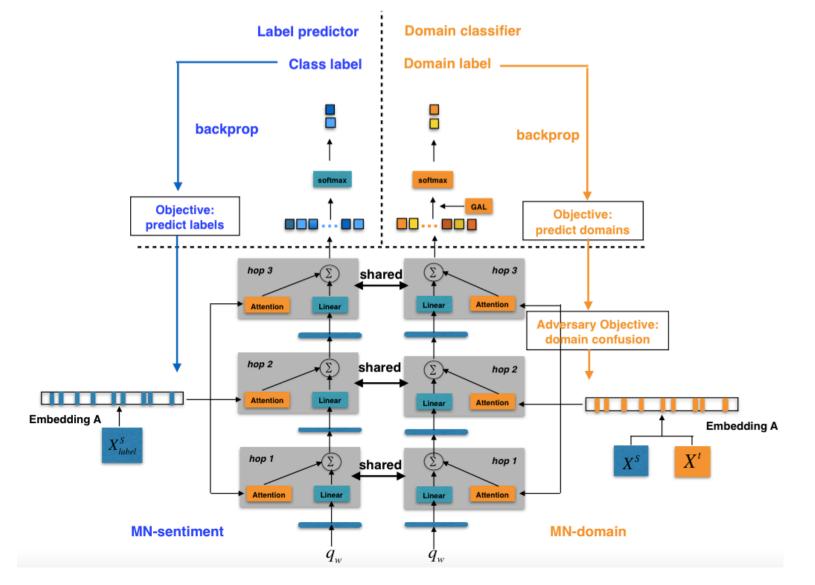
4: 回复排序

Demo

•操作提示:

- "PERSONALIZE": 进入个性化模型
- "RESET": 开始点一杯新的咖啡
- "RESETUSER": 删除当前用户的口味偏好

End-to-End Adversarial Memory Network for Cross-domain Sentiment Classification



End-to-End Adversarial Memory Network for Cross-domain Sentiment Classification

Tasks	Positive sentiment words	Negative sentiment words
Electronics -kitchen	good great amazing excellent better best nice cool perfect happy fantastic outstanding cheaper easy beautiful convenient well fine wonderful worthwhile pleased affordable fast cheap flawless unbelievable reliable satisfied impressive pretty compatible nicely comfort powerful brilliant worth unbreakable fancy impressed compact handy elegant quick love durable	bad worst worse uncomfortable useless confused unreliable sad unacceptable poor impossible misleading unhappy waste upset disappointing thrilled disappointed disappointment negative terrible messy unsuitable worthless horrible poorly pricy defective dangerous fragile incorrectly stressful confusing expensive frustrating difficult unexpected painful ridiculous

Figure 3: Samples of pivots captured by our method in the $E \rightarrow K$ task.

Source Domain: Face Recognition

Target Domain: Airplane Recognition

Source Domain: Object Recognition

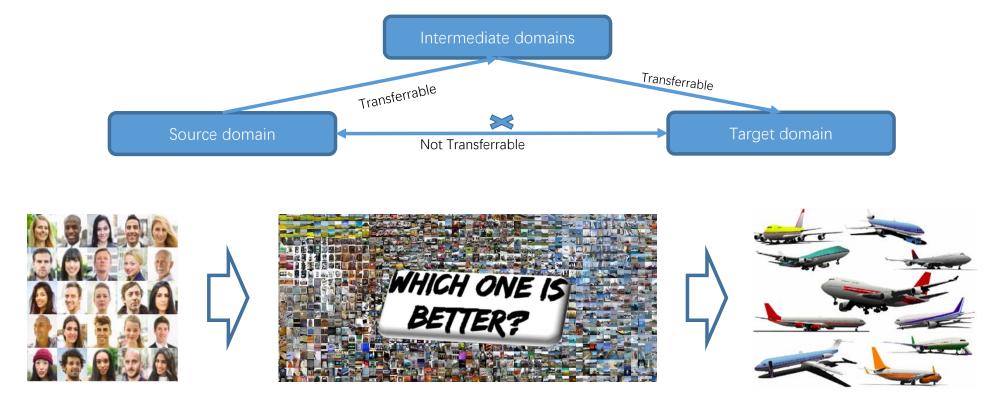
Target Domain: Poverty estimation from Satellite images

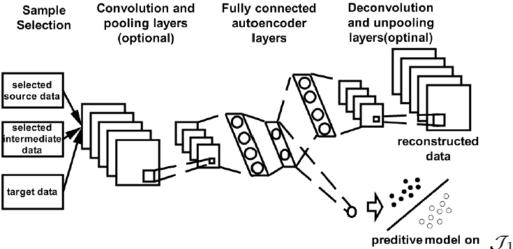
Distant Concepts

- Supervised learning: consider only one problem domain.
- Transfer learning: source and target domains should be similar.
- Distant domain transfer learning: source and target domains can be distant.

More previous knowledge could be used

• Some auxiliary intermediate domain data are selected to bridge the given source and target domains, and performs knowledge transfer along the bridge.





$$= (f_e, f_d, \boldsymbol{v}_S, \boldsymbol{v}_I) = \frac{1}{n_S} \sum_{i=1}^{n_S} v_S^i \| \hat{\boldsymbol{x}}_S^i - \boldsymbol{x}_S^i \|_2^2 + \frac{1}{n_I} \sum_{i=1}^{n_I} v_I^i \| \hat{\boldsymbol{x}}_I^i - \boldsymbol{x}_I^i \|_2^2$$

$$+\frac{1}{n_T}\sum_{i=1}^{n_T} \|\hat{\boldsymbol{x}}_T^i - \boldsymbol{x}_T^i\|_2^2 + R(\boldsymbol{v}_S, \boldsymbol{v}_I), \quad (1)$$

$$R(\boldsymbol{v}_{S}, \boldsymbol{v}_{I}) = -\frac{\lambda_{S}}{n_{S}} \sum_{i=1}^{n_{S}} v_{S}^{i} - \frac{\lambda_{I}}{n_{I}} \sum_{i=1}^{n_{I}} v_{I}^{i}.$$

$$\mathcal{J}_{2}(f_{c}, f_{e}, f_{d}) = \frac{1}{n_{S}} \sum_{i=1}^{n_{S}} v_{S}^{i} \ell(y_{S}^{i}, f_{c}(\boldsymbol{h}_{S}^{i})) + \frac{1}{n_{T}} \sum_{i=1}^{n_{T}} \ell(y_{T}^{i}, f_{c}(\boldsymbol{h}_{T}^{i}))$$
$$+ \frac{1}{n_{I}} \sum_{i=1}^{n_{I}} v_{I}^{i} g(f_{c}(\boldsymbol{h}_{I}^{i})), \qquad (2)$$

$$\min_{\boldsymbol{\Theta},\boldsymbol{v}} \mathcal{J} = \mathcal{J}_1 + \mathcal{J}_2, \quad \text{s.t. } v_S^i, v_I^i \in \{0,1\}$$

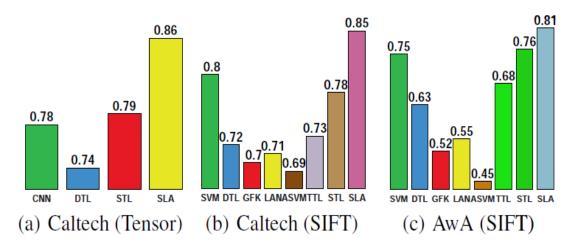
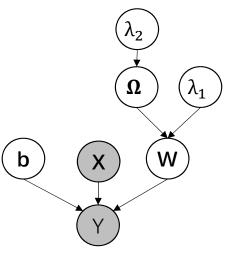


Figure 3: Average accuracies of different learning algorithms on the Caltech-256 and AwA datasets.

Sparse Task Relation Learning in Multi-Task Learning

- Existing works assume that task relations are dense
- When the number of tasks is large, usually a task cannot be helpful to all of other tasks
- Task relations exhibit sparse patterns
- A Framework to Learn Task Relations:

$$\min_{\mathbf{W},\mathbf{b},\mathbf{\Omega}\succeq\mathbf{0}} \sum_{i=1}^{m} \frac{1}{n_i} \sum_{j=1}^{n_i} l\left(\mathbf{w}_i^T \phi(\mathbf{x}_j^i) + b_i, y_j^i\right) + \frac{\lambda_1}{2} \operatorname{tr}(\mathbf{W}\mathbf{\Omega}^{-1}\mathbf{W}^T) + \lambda_2 g(\mathbf{\Omega})$$



Concrete Instances:

Regularization with Given Covariance Trace/Schatten Norm Regularization Squared Trace/Schatten Norm Regularization Cluster Norm Regularization Regularization with Sparse Inverse of Ω

Physical meaning of Ω

 Ω can be viewed as a covariance matrix to describe the pairwise task relations

Sparse Task Relation Learning in Multi-Task Learning

- $\boldsymbol{\Omega}$ corresponds to the task relations
- Expect to learn a sparse ${f \Omega}$
- l_1 norm leads to sparsity
- The objective function:

$$\min_{\mathbf{W},\mathbf{b},\mathbf{\Omega}\succeq\mathbf{0}} \sum_{i=1}^{m} \frac{1}{n_i} \sum_{j=1}^{n_i} l\left(\mathbf{w}_i^T \phi(\mathbf{x}_j^i) + b_i, y_j^i\right) + \frac{\lambda_1}{2} \operatorname{tr}(\mathbf{W}\mathbf{\Omega}^{-1}\mathbf{W}^T) + \lambda_2 \|\mathbf{\Omega}\|_1$$

Convex problem

Theorem 1 Suppose ω_{ij} , the (i, j)th element in Ω , is equal to 0. Then the optimal \mathbf{w}_i is not spanned by $\phi(\mathbf{X}_j)$ and similarly \mathbf{w}_j is not spanned by $\phi(\mathbf{X}_i)$, where $\phi(\mathbf{X}_j) =$ $(\phi(\mathbf{x}_1^j), \ldots, \phi(\mathbf{x}_{n_j}^j))$ is the data matrix for the jth task. **Theorem 2** The optimal Ω of problem (6) satisfies $\Omega \succeq \frac{\mu_m(\mathbf{W})}{\sqrt{2m\tau}}\mathbf{I}$.

Sparse Task Relation Learning in Multi-Task Learning

- Alternating optimization
- Fix $\boldsymbol{\Omega}$ Optimize \boldsymbol{W} and \boldsymbol{b}

$$\min_{\mathbf{W},\mathbf{b}} \sum_{i=1}^{m} \frac{1}{n_i} \sum_{j=1}^{n_i} \left(\mathbf{w}_i^T \phi(\mathbf{x}_j^i) + b_i - y_j^i \right)^2 + \frac{\lambda_1}{2} \operatorname{tr}(\mathbf{W} \mathbf{\Omega}^{-1} \mathbf{W}^T)$$

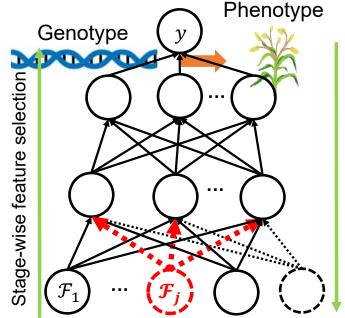
• Analytical solution

- Fix W and b Optimize Ω $\min_{\Omega \succeq 0} \frac{\lambda_1}{2} \operatorname{tr}(\Omega^{-1} \mathbf{R}) + \lambda_2 \|\Omega\|_1$
 - Convex problem

Sentiment [↑]	Landmine↑	MHC-I↑	Parkinson↓	School↓
4	29	35	42	149
0.8303 ± 0.0098	0.6854 ± 0.0261	0.6677 ± 0.0234	1.1327 ± 0.0866	1.1453 ± 0.0599
$0.8237 {\pm} 0.0209$	0.7015 ± 0.0244	$0.6879 {\pm} 0.0227$	$1.0828 {\pm} 0.0460$	1.1004 ± 0.0631
$0.8764{\pm}0.0078$	$0.7236 {\pm} 0.0249$	$0.7076 {\pm} 0.0203$	$1.0744 {\pm} 0.0415$	$1.0247 {\pm} 0.0879$
$0.8808 {\pm} 0.0085$	0.7496±0.0287	0.6943 ± 0.0230	1.0207 ± 0.0162	$0.9048 {\pm} 0.0981$
_	$0.7228 {\pm} 0.0204$	$0.7070 {\pm} 0.0084$	1.0203 ± 0.0119	$1.1040 {\pm} 0.0474$
0.8267 ± 0.0279	$0.7286 {\pm} 0.0202$	$0.7232{\pm}0.0297$	$1.1182 {\pm} 0.0617$	$1.1559 {\pm} 0.0538$
$0.8576 {\pm} 0.0103$	$0.7420{\pm}0.0121$	$0.7299 {\pm} 0.0240$	$0.9894{\pm}0.0229$	$0.9110{\pm}0.0291$
<u> </u>	D 11			
School	Parkinson	Landmine	MHC-I	
73.79%	77.62%	79.19%	81.14%	
	4 0.8303±0.0098 0.8237±0.0209 0.8764±0.0078 0.8808±0.0085 - 0.8267±0.0279 0.8576±0.0103 School	4 29 0.8303±0.0098 0.6854±0.0261 0.8237±0.0209 0.7015±0.0244 0.8764±0.0078 0.7236±0.0249 0.8808±0.0085 0.7496±0.0287 - 0.7228±0.0204 0.8267±0.0279 0.7286±0.0202 0.8576±0.0103 0.7420±0.0121	429350.8303±0.00980.6854±0.02610.6677±0.02340.8237±0.02090.7015±0.02440.6879±0.02270.8764±0.00780.7236±0.02490.7076±0.02030.8808±0.00850.7496±0.02870.6943±0.0230-0.7228±0.02040.7070±0.00840.8267±0.02790.7286±0.02020.7232±0.02970.8576±0.01030.7420±0.01210.7299±0.0240SchoolParkinsonLandmine	42935420.8303±0.00980.6854±0.02610.6677±0.02341.1327±0.08660.8237±0.02090.7015±0.02440.6879±0.02271.0828±0.04600.8764±0.00780.7236±0.02490.7076±0.02031.0744±0.04150.8808±0.00850.7496±0.02870.6943±0.02301.0207±0.0162-0.7228±0.02040.7070±0.00841.0203±0.01190.8267±0.02790.7286±0.02020.7232±0.02971.1182±0.06170.8576±0.01030.7420±0.01210.7299±0.02400.9894±0.0229KinsonLandmineMHC-I

Deep Neural Networks for High Dimension, Low Sample Size Data

- Motivating Application:
 - Phenotype prediction problem using genetic data
 - $N \approx 5000$, Dim > 150 million
- Learning from high dimension, low sample size data is challenging.
 - High dimension leads to overfitting.
 - Low sample size leads to high-variance gradients.
- Method (Deep Neural Pursuit)
 - **Overfitting:** stagewise **feature selection** in the context of neural network.
 - High-variance gradients: gradients estimation by dropout multiple times.



- Results:
 - DNP performs superior w.r.t. both performances of classification and true feature identification.

													, <u> </u>
Classification AUC		True Dim	2	5	10	25	$LogR-l_1$	F1 score	0.141	0.313	0.364	0.266	eature Ide
	$LogR-l_1$	AUC	0.868	0.826	0.755	0.661		Std	0.025	0.045	0.046	0.035	
		Std	0.003	0.001	0.014	0.017	GBFS HSIC-Lasso	F1 score	0.182	0.050	0.429	0.105	
	GBFS	AUC	0.748	0.721	0.757	0.565		Std	0.183	0.056	0.048	0.050	
		Std	0.184	0.130	0.011	0.029							e e
	HSIC-Lasso	AUC	0.948	0.881	0.747	0.642		F1 score	1.000	0.889	0.667	0.253	or nti
		Std	0.003	0.001	0.003	0.007		Std	0.000	0.000	0.000	0.033	tific
	DNP	AUC	0.926	0.887	0.813	0.650	DNP	F1 score	1.000	0.862	0.857	0.378	
		Std	0.005	0.023	0.025	0.016		Std	0.000	0.075	0.085	0.054	ion